Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Journal of hazardous materials ; 2023.
Article in English | EuropePMC | ID: covidwho-2297481

ABSTRACT

On-site environmental surveillance of viruses is increasingly important for infection prevention and pandemic control. Herein, we report a facile single-tube colorimetric assay for detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from environmental compartments. Using glycerol as the phase separation additive, reverse transcription recombinase polymerase amplification (RT-RPA), CRISPR-Cas system activation, G-quadruplex (G4) cleavage, and G4-based colorimetric reaction were performed in a single tube. To further simplify the test, viral RNA genomes used for the one-tube assay were obtained via acid/base treatment without further purification. The whole assay from sampling to visual readout was completed within 30 min at a constant temperature without the need for sophisticated instruments. Coupling the RT-RPA to CRISPR-Cas improved the reliability by avoiding false positive results. Non-labeled cost-effective G4-based colorimetric systems are highly sensitive to CRISPR-Cas cleavage events, and the proposed assay reached the limit of detection of 0.84 copies/μL. Moreover, environmental samples from contaminated surfaces and wastewater were analyzed using this facile colorimetric assay. Given its simplicity, sensitivity, specificity, and cost-effectiveness, our proposed colorimetric assay is highly promising for applications in on-site environmental surveillance of viruses. Graphical

SELECTION OF CITATIONS
SEARCH DETAIL